Findings of the WMT 2023 Shared Task on **Machine Translation with Terminologies**

Kirill Semenov^C Vilém Zouhar^E Tom Kocmi^M Dongdong Zhang^M

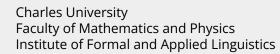
Wangchunshu Zhou^A Yuchen Eleanor Jiang^A

^cCharles University

EETH Zürich

^MMicrosoft

^AAlWaves



Motivation and Task

- For specific domains, accurate and consistent terminologies are critical
- No widely used metrics or solutions
- Terminologies are easier to collect

Assess the extent to which an MT system can:

- Make use of the additionally provided dictionary
- Adhere to the specific terminology constraints

Introduction 2

Three Modes

	Source : "Most informative is the analysis of airway secretions:"			
Base	Reference : "Häufig jedoch führt die Analyse von Material aus den Atemwegen zur Diagnose:"			
	Terms: {}			
	Source: "Most informative is the analysis of airway secretions:"			
Proper	Reference : "Häufig jedoch führt die Analyse von Material aus den Atemwegen zur Diagnose:"			
	Terms : {"analysis of airway secretions" \rightarrow "Analyse von Material aus den Atemwegen"}			
	Source: "Most informative is the analysis of airway secretions:"			
Random	Reference : "Häufig jedoch führt die Analyse von Material aus den Atemwegen zur Diagnose:"			

Terms: {"Most"→"Häufig"}

Introduction

Data: Languages, Domains and Annotation

Chinese→English:

- BWB corpus (Jiang et al. 2023);
 web novels domain
- Manual terminology annotation

$X \rightarrow Y$	Count	X/Y Words	Terms	
German→English	2963	22.2/22.6	3.8	
English→Czech	3005	25.6/21.6	3.6	
Chinese→English	2640	9.7/36.9	1.1	

German→English:

- MuchMore Springer Bilingual Corpus; medical papers
- GPT-4 terms extraction + human post-editing

English→Czech:

- Czech and English abstracts of ÚFAL papers (Rosa&Zouhar, 2022); NLP abstracts
- GPT-4 terms extraction + human post-editing

Metrics

General accuracy: chrF, COMET, COMET-KIWI

Consistency: by Semenov&Bojar, 2022.

- Reference-less metric
- Compares each term's translations to its first translation
- Lemmatized

Success rate:

- Regex / fuzzy match, *surface tokens* / lemmas

Comparison with Previous Run

Difference in setups between Terminology WMT2021 and WMT2023:

- 1. language pairs and domains:
 - 1.1. En \rightarrow {Fr, Zh, Ru, Ko}, Cs \rightarrow De VS {Zh, De} \rightarrow En, En \rightarrow Cs
 - 1.2. Medical (COVID-19) VS medical (general), web novels, academic

2. Annotation:

- 2.1. Term extraction: human VS GPT4+human, human
- 2.2. Modes: terms VS proper terms, random terms, no terms

3. Terminology metrics:

3.1. Reference-based success rate+consistency VS reference-based success rate, reference-less consistency

Participants

Participants: Overview

- 7 participants, 15 submitted systems
- Language pairs coverage:
 - o zh-en: 15/15 systems
 - en-cs, de-en: 7/15 systems
- Main approaches:
 - Source-based:
 - Terminology injection
 - Copy mechanism, separate encoders (src, terminology)
 - Target-based:
 - Constrained decoding
 - Post-editing (incl. LLMs)
 - Synthetic data: sentences with terminology; unsupervised terminologies

Participants 9

Results and Discussion

Results: Overview - NEW!

System	De→En	Zh→En	
AdaptTerm	61.0	64.4	37.5
Lingua Custodia	61.8	67.7	32.6
OPUS-CAT	68.3★	75.1 ★	27.7
UEDIN _{LLM}	60.0	64.8	41.2
UEDIN _{Tag}	58.3	64.7	41.0
UEDIN _{Twoshot}	60.5	62.4	34.5
BJTU-LB			43.8★
VARCO-MT _{TSSNMT}			43.0
VARCO-MT _{ForceGen}			40.5
Huawei	62.1	58.2	36.8

<u> </u>	COMET ^{DA}				
System	$De{\rightarrow}En$	En→Cs	Z h→ E n		
AdaptTerm	0.801	0.841	0.688		
Lingua Custodia	0.735	0.834	0.609		
OPUS-CAT	0.828★	0.889★	0.557		
UEDIN _{LLM}	0.813	0.869	0.757★		
$UEDIN_{Tag}$	0.809	0.868	0.757★		
UEDIN _{Twoshot}	0.792	0.835	0.650		
BJTU-LB			0.751		
VARCO-MT _{TSSNMT}			0.755		
VARCO-MT _{ForceGen}			0.715		
Huawei	0.843	0.887	0.666		

	Terminology Consistency				
System	De→En	En→Cs	Zh→En		
AdaptTerm	0.617	0.753	0.750		
Lingua Custodia	0.602	0.766	0.696		
OPUS-CAT	0.661*	0.808*	0.293		
UEDIN _{LLM}	0.588	0.741	0.713		
UEDIN _{Tag}	0.606	0.750	0.755		
UEDIN _{Twoshot}	0.574	0.737	0.622		
BJTU-LB			0.764		
VARCO-MT _{TSSNMT}			0.971		
VARCO-MT _{ForceGen}			0.773★		
Huawei	0.788	0.603	0.562		

	Terminology Success Rate				
System	$De{\rightarrow}En$	En→Cs	$\mathbf{Z}\mathbf{h}{ ightarrow}\mathbf{E}\mathbf{n}$		
AdaptTerm	0.591	0.577	0.785		
Lingua Custodia	0.632	0.640	0.774		
OPUS-CAT	0.948★	0.932	0.133		
UEDIN _{LLM}	0.557	0.594	0.750		
UEDIN _{Tag}	0.532	0.584	0.765		
UEDIN _{Twoshot}	0.560	0.498	0.452		
VARCO-MT _{TSSNMT}			0.779		
VARCO-MT _{ForceGen}			0.793*		
BJTU-LB			0.759		
Huawei	0.690	0.455	0.529		

Best Performers

De-En, En-Cs: OPUS-CAT, Lingua Custodia, AdaptTerm, UEDIN-LLM

Zh-En: BJTU-LB, Varco MT (ForceGen), UEDIN-LLM, UEDIN-Tag

- All approaches work
- Zh VS others
- chrF, COMET quality improves with any dictionary
 - consistency and success rate react more to proper terminology
- System ranking similar for chrF, COMET and term success rate,
 but differ for term consistency

Results 12

Results: Average Difference - NEW!

	ChrF		COMET ^{DA}		T. Consistency		T. Success Rate	
System	+Proper	+Random	+Proper	+Random	+Proper	+Random	+Proper	+Random
AdaptTerm	9.0	11.6	0.043	0.054	0.020	-0.010	0.3	0.338
Lingua Custodia	10.1	11.8	0.032	0.026	0.118	-0.016	0.402	0.369
OPUSCAT	10.2	9.2	0.031	0.043	0.055	0.187	0.345	0.247
UEDIN _{LLM}	6.4	7.5	0.011	0.017	0.027	0.018	0.214	0.157
UEDIN _{Tag}	5.4	6.5	0.010	0.013	0.055	0.009	0.218	0.127
UEDIN _{Twoshot}	6.9	5.9	0.029	0.012	0.045	-0.013	0.193	0.165
BJTU-LB †	2.5	0.8	0.015	0.007	0.058	0.049	0.252	-0.208
VARCO-MT _{TSSNMT} †	8.3	4.7	0.054	0.017	0.171	0.089	0.515	-0.041
VARCO-MT _{ForceGen} †	3.4	0.9	0.019	0.003	0.166	0.021	0.529	-0.106
Huawei	0.2	0.9	-0.004	0.010	-0.010	-0.090	0.038	-0.113

- ChrF, COMET any terminology helps
- Consistency, success rate improvement on proper terminology

Discussion, Limitations and Perspectives

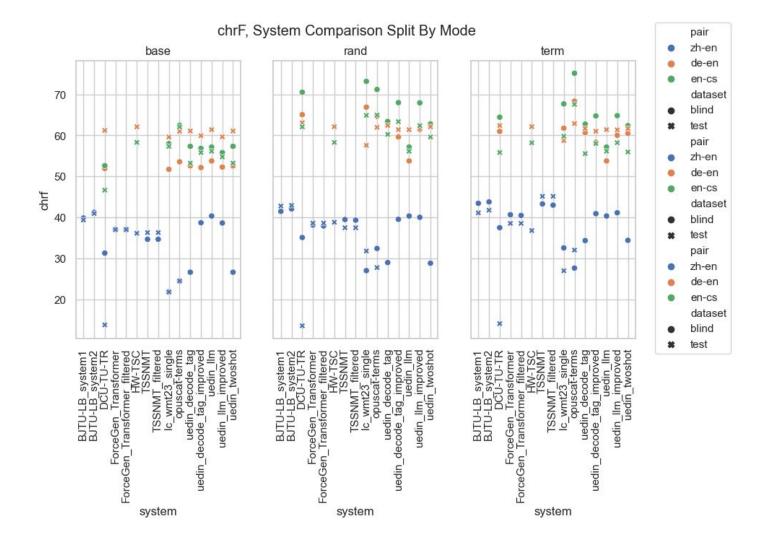
Discussion:

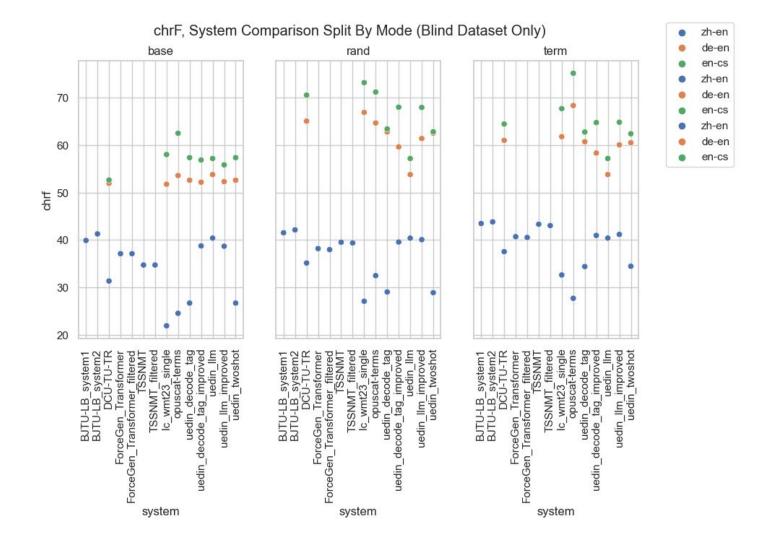
- Low correlation of consistency VS any other metric:
 - Pay more attention for competitors?
 - Or improve a metric?

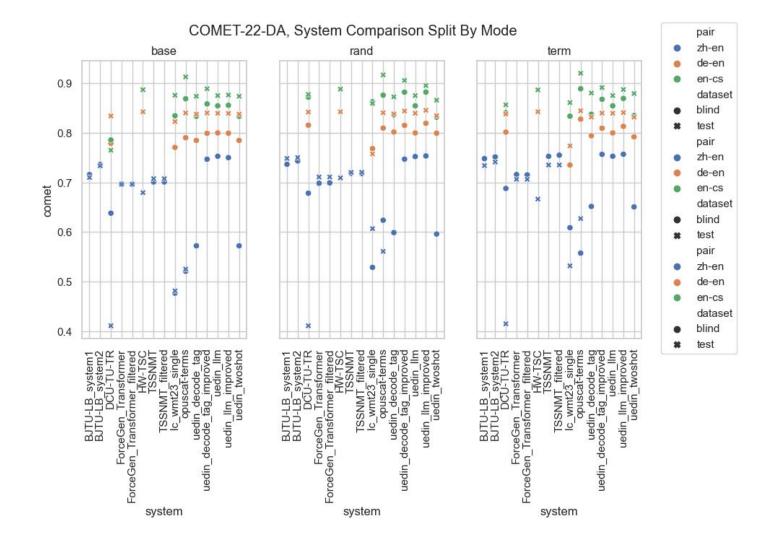
Limitations:

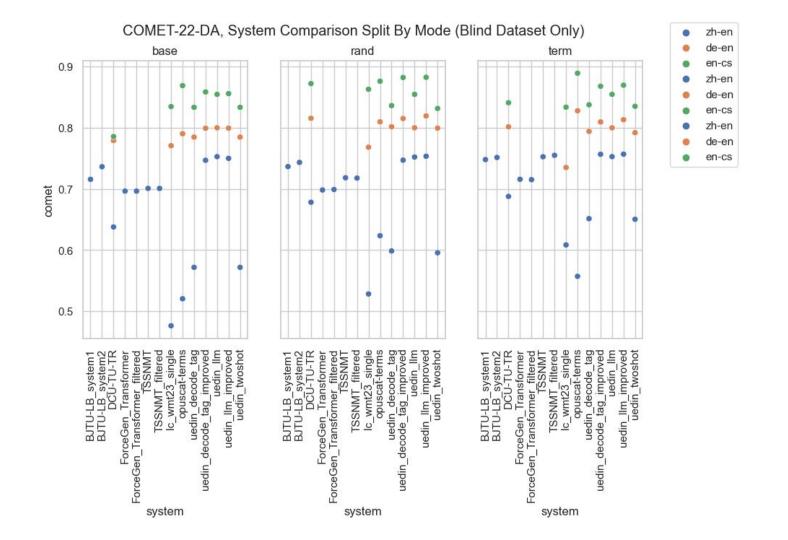
- Not enough controlled parameters (incl style/domain, terminology extraction and systems applied to all languages)
- No qualitative analysis

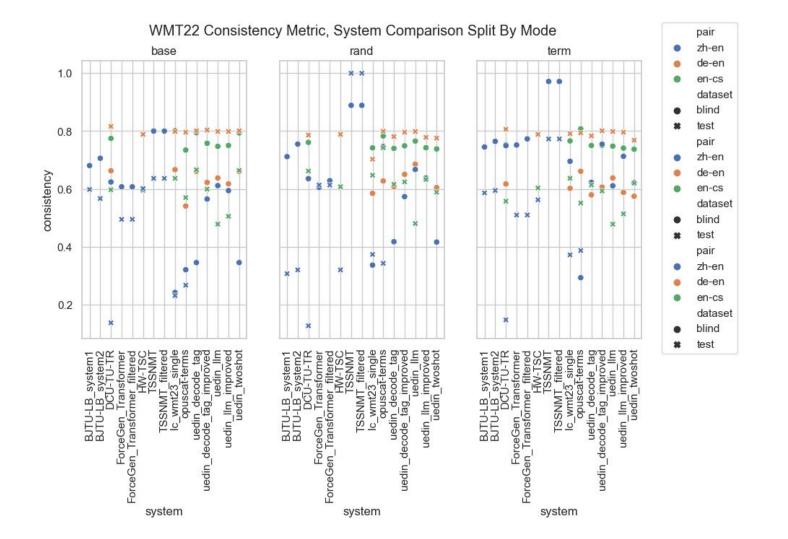
Perspectives:

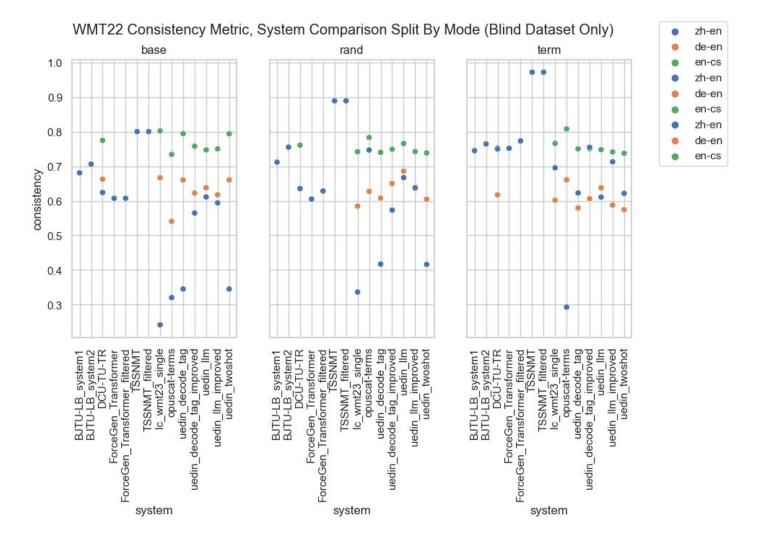

- Replication and more setup consistency over years?
- Other languages why Zh-En is so different?

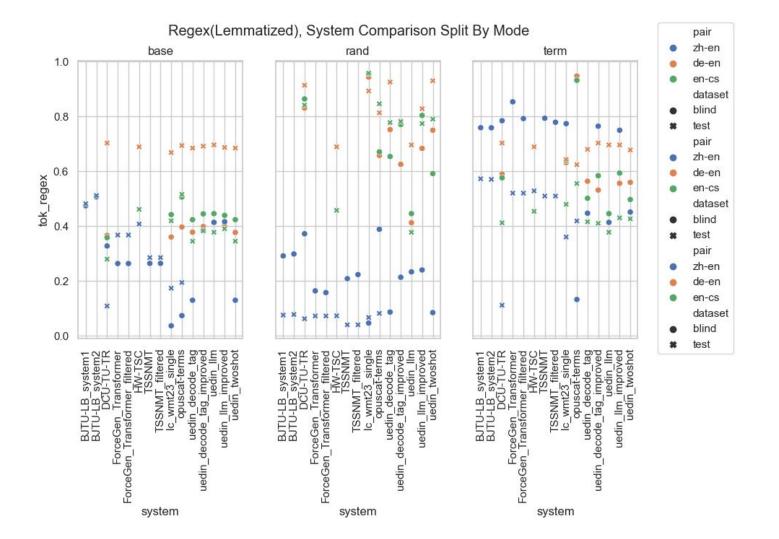

Thank you!

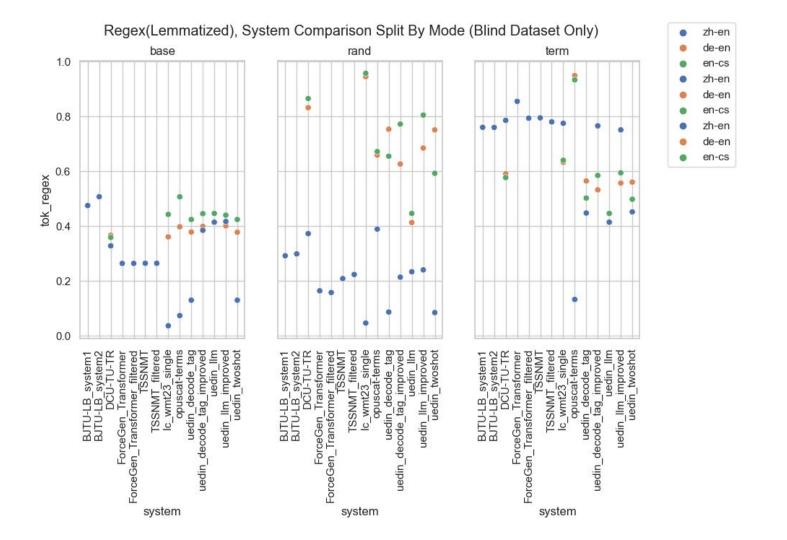

All updated statistics are available at the Shared Task web page:

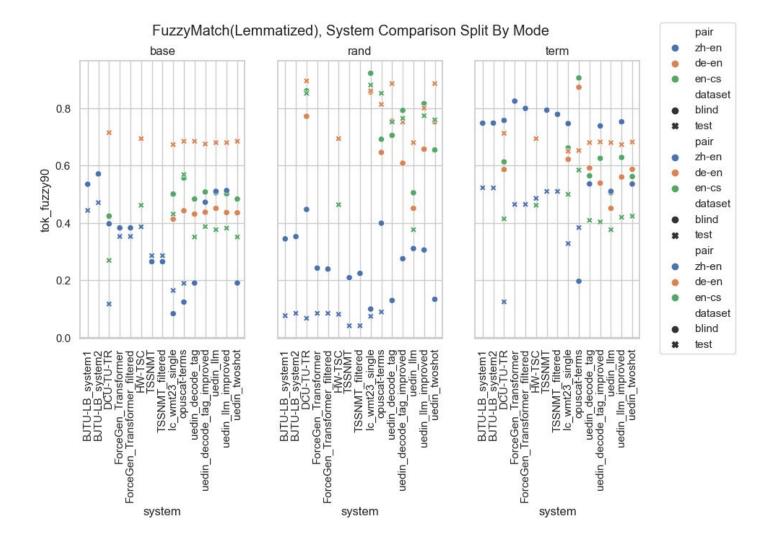

wmt-terminology-task.github.io/

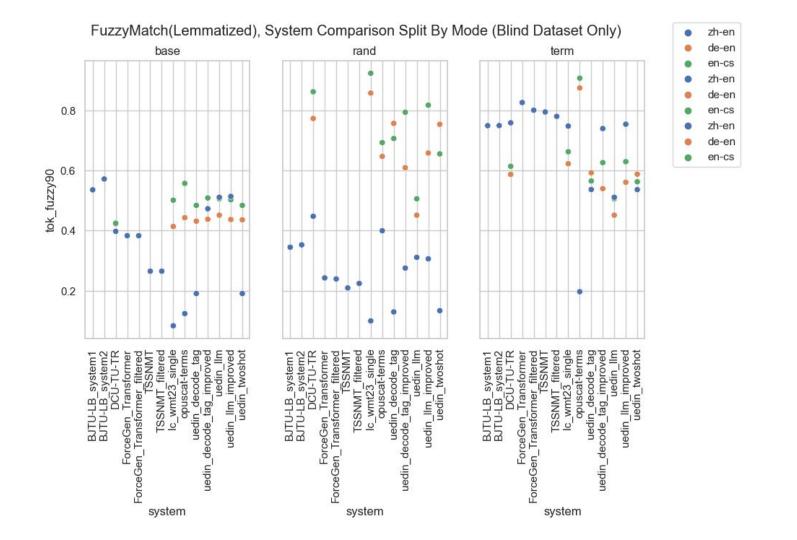

Additional Slides









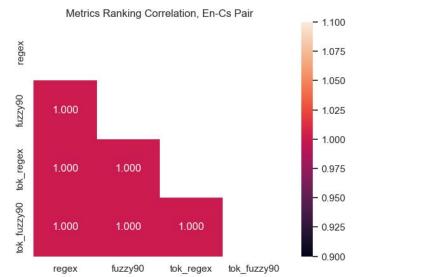


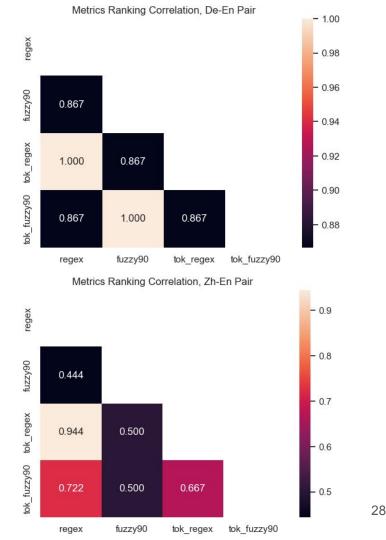


Ranking Correlation: Main Metrics

The graphs represent Kenndall's tau measuring the correlation between the rankings by different metrics (higher is better).

NB: "tok_regex" means lemmatized regex metric





Ranking Correlation: Success Rate Variants

The graphs represent Kenndall's tau measuring the correlation between the rankings by different variants of success rate metrics (raw text VS lemmas, regex VS fuzzy match)

NB: "tok_" prefix means lemmatized metric

References

Yuchen Eleanor Jiang, Tianyu Liu, Shuming Ma, Dongdong Zhang, Mrinmaya Sachan, and Ryan Cotterell. 2023. Discourse-Centric Evaluation of Document-level Machine Translation with a New Densely Annotated Parallel Corpus of Novels. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 7853–7872, Toronto, Canada. Association for Computational Linguistics.

Rudolf Rosa and Vilém Zouhar. 2022. Czech and English abstracts of ÚFAL papers (2022-11-11). LINDAT/CLARIAH-CZ digital library at the Institute of Formal and Applied Linguistics (ÚFAL), Faculty of Mathematics and Physics, Charles University.

MuchMore Springer Bilingual Corpus. https://muchmore.dfki.de/resources1.htm

Kirill Semenov and Ond rej Bojar. 2022. Automated evaluation metric for terminology consistency in MT. In Proceedings of the Seventh Conference on Machine Translation (WMT), pages 450–457, Abu Dhabi, United Arab Emirates (Hybrid). Association for Computational Linguistics.